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ABSTRACT

Remotely sensed soil moisture data are typically incorporated into numerical weather models under a

framework of weakly coupled data assimilation (WCDA), with a land surface analysis scheme independent

from the atmospheric analysis component. In contrast, strongly coupled data assimilation (SCDA) allows

simultaneous correction of atmospheric and land surface states but has not been sufficiently explored with

land surface soil moisture data assimilation. This study implemented a variational approach to assimilate the

Soil Moisture Active Passive (SMAP) 9-km enhanced retrievals into the Noah land surface model coupled

with the Weather Research and Forecasting (WRF) Model under a framework of both WCDA and SCDA.

The goal of the study is to quantify the relative impact of assimilating SMAP data under different coupling

frameworks on the atmospheric forecasts in the summer. The results of the numerical experiments during July

2016 show that SCDA can provide additional benefits on the forecasts of air temperature and humidity

compared to WCDA. Over the U.S. Great Plains, assimilation of SMAP data under WCDA reduces a warm

bias in temperature and a dry bias in humidity by 7.3% and 19.3%, respectively, while the SCDA case

contributes an additional bias reduction of 2.2% (temperature) and 3.3% (humidity).WhileWCDA leads to a

reduction of RMSE in temperature forecasts by 4.1%, SCDA results in additional reduction of RMSE by

0.8%. For the humidity, the reduction of RMSE is around 1% for both WCDA and SCDA.

1. Introduction

Soil moisture is a key variable that modulates the

radiative energy partition into latent and sensitive heat

fluxes over the land surface and has a relatively long

memory (days to weeks) (Dirmeyer et al. 2009). Via

data analysis, many research studies have revealed the

feedback of soil moisture on precipitation variability

on various space and time scales, and this feedback is

particularly strong over midlatitudes during the sum-

mer (Dirmeyer 2011; Taylor et al. 2012; Spennemann

and Saulo 2015; Liu et al. 2016, 2017; Tuttle and

Salvucci 2016). For modeling perspectives, it has been

demonstrated that numerical weather prediction (NWP),

especially precipitation forecasts, are sensitive to the

initialization of land surface soil moisture (Ek and

Holtslag 2004; Sutton et al. 2006; Aligo et al. 2007;

Case et al. 2008, 2011; Trier et al. 2008; Hohenegger

et al. 2009; Van Weverberg et al. 2010; Quintanar and

Mahmood 2012; Massey et al. 2016). Therefore, ac-

curate representation of soil moisture is important

in NWP.

Assimilation or nudging of satellite soil moisture

measurements is one of the most common methods

for improving initial soil moisture conditions in NWP.

There are a growing number of satellite missions ca-

pable of measuring surface soil moisture, including

the Advanced Scatterometer (ASCAT; Wagner et al.

2013; Brocca et al. 2017), Soil Moisture and Ocean

Salinity (SMOS; Kerr et al. 2010), Soil Moisture Active

Passive (SMAP; Entekhabi et al. 2010a), and Advanced

Microwave Scanning Radiometer on the Earth Ob-

serving System (AMSR-E; Njoku et al. 2003), which

lead to increased soil moisture data coverage in time

and space. To assimilate soil moisture data, several

NWP operational centers have tested and implemented

a coupled system that allows land surface and atmo-

spheric data analysis separately. This type of system is

built upon a fully coupled land–atmosphere model or
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an offline version land surface model that communi-

cates with its corresponding atmospheric component

every analysis cycle (e.g., 6 h). For example, a soil

moisture nudging method was first implemented into

the Integrated Forecast System at the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF;

Drusch 2007). To incorporate observations of various

types with more realistic error covariance, an extended

Kalman filter has been implemented and studied in

the land analysis system of the Aire Limitée Adapta-

tion Dynamique Développement Internation (ALADIN)

and ECMWF (Mahfouf et al. 2009; Mahfouf 2010;

De Rosnay et al. 2013; Schneider et al. 2014; Duerinckx

et al. 2017). In addition, a soil moisture nudging method

was implemented into the NWP system at the Met Of-

fice (Dharssi et al. 2011) while an ensemble Kalman

filter was tested with the Global Forecast System (GFS)

at the U.S. National Centers for Environmental Pre-

diction (NCEP) (Yin and Zhan 2018; Zheng et al.

2018). On a regional scale, previous research also dem-

onstrated the benefit of soil moisture data assimilation

within the Weather Research and Forecasting (WRF)

Model (Rasmy et al. 2011, 2012; Santanello et al. 2016;

Lin et al. 2017a,b).

The aforementioned practices and implementation

have demonstrated how assimilated soil moisture can

improve weather forecasts via reducing errors propa-

gated from the land surface during model integration.

However, the practices and implementation in these

past studies are mainly considered under a framework

of weakly coupled data assimilation, indicating that the

land and atmospheric analyses are performed sepa-

rately. Strongly coupled data assimilation requires the

estimation of cross-model error covariance and the

correction of analysis variables in coupled models

simultaneously (Penny et al. 2017; Yoshida and

Kalnay 2018; Suzuki and Zupanski 2018), but its rel-

evant research with land–atmosphere models is little

up to now. Lin and Pu (2018, hereafter LP18) have

estimated the model background error covariance

between land surface soil moisture and atmospheric

states, including potential temperature, specific humid-

ity, and winds. They found that the error correlation

between surface soil moisture, temperature, and hu-

midity is comparable, which suggests 1) part of the

errors in the surface soil moisture come from the at-

mosphere forcing and 2) the potential of correcting

atmospheric initial conditions via soil moisture data

assimilation.

In light of challenges in coupled data assimilation,

we have implemented the methodology in LP18 to

study the relative effect of assimilating soil moisture

data on weather forecasts under a framework of weakly

and strongly coupled land–atmosphere data assimilation.

Specifically, we aim to quantify the additional impact

on lower-troposphere atmospheric forecasts via a di-

rect analysis procedure (i.e., a strongly coupled case)

relative to the impact on forecasts via the dynamics of

land–atmosphere interactions (i.e., a weakly coupled

case) when satellite soil moisture data are assimilated.

This study uses the Noah land surface model coupled

with the WRF Model and conducts the experiments in

the summer. The SMAP 9-km level-2 enhanced soil

moisture retrievals (O’Neill et al. 2016) are assimi-

lated. LP18 revealed a weak correction between the

forecast errors in surface soil moisture and winds and

suggested that the wind forecasts are less sensitive

to the assimilation of surface soil moisture than the

temperature and humidity forecasts. Thus, this study

focuses on the effect of coupled data assimilation on

only the states of air temperature and humidity over

the Great Plains of the United States.

The rest of the paper is organized as follows: section 2

describes the coupled data assimilation system, the

configuration of the model and domain, the SMAP

soil moisture dataset and its bias correction, the ex-

periment design, and the method and datasets for veri-

fication. Section 3 presents the evaluation of model skills

in surface soil moisture, temperature, specific humidity,

and precipitation over the Great Plains. Section 4 in-

cludes discussions and concluding remarks.

2. Methodology

a. Coupled data assimilation system and study
domain

This study uses the 1D-Var approach described in

LP18 to perform weakly and strongly coupled data

assimilation. Specifically, we use the following equation

to obtain the state analysis:

xa 5 xb 1BHT(HBHT 1R)
21
d , (1)

where xb and xa denote the vectors of the background

and analysis, respectively; H denotes the linear form of

an observational operator; d is the innovation vector;

andB andR represent the background and observational

error covariancematrices, respectively. TheB-matrix can

be further decomposed as B 5 SCS, where S consists

the error standard deviation of the analysis states in

the diagonal component; andC describes the correlation

of the forecast errors between different analysis states.

The B-matrix is particularly important in a strongly

coupled data assimilation system, as it enables an ob-

servation over land to directly impact the atmospheric

state analyses and vice versa (e.g., Sawada et al. 2018;
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Suzuki et al. 2017). To study the impact of satellite soil

moisture data in coupled data assimilation, we adopt

the background error covariance estimates from LP18.

These estimates are available on a monthly scale and

at a spatial resolution of 9 km for the control states of

top 10-cm soil moisture and air potential tempera-

ture, specific humidity, and winds at 40 pressure levels

throughout the atmosphere. The monthly estimates were

obtained according to the characteristics of multiple

forecasts from 2015 to 2017 using the National Mete-

orological Center method (Parrish and Derber 1992).

As LP18 found that the error correlation between land

surface soil moisture and atmospheric winds is not ob-

vious, this study will consider only surface soil moisture

and atmospheric temperature and humidity as the con-

trol analysis states in the coupled data assimilation

experiments.

To maintain consistency, this study adopts the do-

main configuration used by LP18. This includes a single

domain of 6023 392 grids at a spatial resolution of 9 km

(Fig. 1). The top pressure level is set at 50 hPa with 40

vertical layers below. We further selected the Great

Plains as a region of interest to study the effect of cou-

pled soil moisture data assimilation. The Great Plains

is commonly known as a transition zone between dry

and wet climates, leading to strong land–atmosphere

coupling (Koster et al. 2004, 2006; Dirmeyer et al. 2009).

In section 3d, we also briefly discuss the coupled data

assimilation performance at the Mountain West. LP18

indicates that the magnitude of the error covariance

is on average larger over the Great Plains than the rest

of the contiguous United States. According to Fig. 5

in LP18, the area average values of the error standard

deviation in July are 0.0138 (m3m23), 1.39 (K), and

1.50 (g kg21) for the top 10-cm soil moisture, bottom-

layer temperature, and bottom-layer specific humidity,

respectively, at the region of interest (the Great Plains).

In contrast, these average numbers are 0.0122 (m3m23),

1.07 (K), and 1.05 (g kg21) for the entire domain (the

contiguous United States) and are 0.0094 (m3m23),

1.13 (K), and 1.06 (g kg21) for the Mountain West.

The error correlation between land surface soil mois-

ture and bottom-layer temperature is also larger in

the Great Plain than the rest of the domain. Since larger

error covariance generally leads to a higher model

sensitivity to the assimilated observations, it further

justifies the selection of the Great Plains for model

verification in this study. More details of the im-

plemented coupled data assimilation system can be

found in LP18.

b. Configuration of WRF-Noah Model

This study uses WRF version 3.9.1 with the Advanced

Research WRF (ARW) solver (Skamarock et al. 2008;

Powers et al. 2017). The WRF Model is a mesoscale

NWP system for both research and operations and

is currently maintained by the National Center for

Atmospheric Research (NCAR). Same as LP18, we use

the WRF contiguous United States (CONUS) physics

suite, which includes the new Thompson microphys-

ics scheme (Thompson et al. 2008), the Rapid Radi-

ative Transfer Model (RRTM) longwave and shortwave

schemes (Iacono et al. 2008), the Monin–Obukhov-

based Eta similarity surface layer scheme (Janjić 2002),

the Noah land surface model (Chen and Dudhia 2001),

the Mellor–Yamada–Janjić planetary boundary layer

FIG. 1. The terrain of the configured WRF-Noah domain with the boundary of the regions of interest over the Great Plains (GP).

The Mountain West (MW) is discussed in section 3d.
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scheme (Janjić 1994), and the Tiedtke cumulus pa-

rameterization scheme (Tiedtke 1989; Zhang et al.

2011). The Noah land surface model has four soil

layers in default with the thickness of 10, 30, 60, and

100 cm from top to bottom. The Noah model simulates

water movement vertically in a single soil column and

provides latent and sensible heat fluxes to the bottom

atmospheric layer of its coupled WRF Model.

c. SMAP soil moisture data and bias correction

This study uses version 1 SMAP level-2 enhanced

soil moisture retrievals (O’Neill et al. 2016). This prod-

uct uses 1) the Backus–Gilbert technique to optimally

interpolate the native SMAP brightness temperature

measurements at a spatial resolution of 36–9km and

2) the core algorithms to obtain soil moisture re-

trievals (Chan et al. 2018). The 9-km enhanced product

that utilizes the oversampling present in the native SMAP

overpasses is found to reveal fine spatial features that

are not obvious in the 36-km SMAP retrievals. Among

the core retrieval algorithms, the V-polarized channel

(SCA-V) provides the best retrieval performance with

an overall unbiased root-mean-square error (ubRMSE)

of less than 0.04m3m23 (Chan et al. 2018). We use the

SCA-V data for both ascending and descending over-

passes, which are valid around 1800 and 0600 local

time, respectively. The SMAP product retrievals in-

clude several types of surface flags, indicating uncer-

tain quality, and these flags include surface conditions

of water, urban areas, precipitation, snow cover and

frozen ground, terrain aspects, and dense vegetation.

We excluded data of these surface conditions, and the

majority of the exclusion is due to dense vegetation.

Figure 2 shows the sample size for the study period

from 1 to 27 July 2016. Over the Great Plains, there

are approximately 11% of the area without coverage

of SMAP data, and the observation sample size is on

average 26 per grid cell for the rest of the area. Fur-

thermore, examples of the effect of surface flags on

data sample sizes over different seasons can be seen in

Lin and Bras (2017).

Satellite and model soil moisture climatology typ-

ically differ from each other, and therefore the imple-

mentation of bias correction on soil moisture data is

often necessary (Reichle and Koster 2004, 2005). The

most commonly adopted bias correction method is

the cumulative distribution function (CDF) technique

that rescales satellite soil moisture retrievals to match

the climatology of the model. This study particu-

larly adopts the bias correction method introduced

by Blankenship et al. (2016, 2018), as this method

was tested with the Noah model, same as this study.

This method requires the construction of the CDFs

by grouping samples of the same soil type within

the Noah land surface model and needs satellite data

of only a short time period such as a couple of months.

To construct the CDFs, we performed multiple

WRF-Noah open-loop forecasts with a lead time of

one day initialized every 12 h at 0000 and 1200 UTC

from May to September 2016 and paired the forecasts

with the SMAP retrievals at a spatial resolution of

9 km. To ensure a large enough sample size for each

soil type group, we merge the samples for soil types

such as silt loam and organic material. We manually

FIG. 2. The sample size of assimilated SMAP soil moisture retrievals during the study period from 1 to 27 Jul 2016. The gray pixels

show areas without SMAP data being assimilated, primarily due to the quality control of data with quality flags.
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examined and ensured a similar CDF for the merged

soil types.

Table 1 shows the percentage of available SMAP

samples in each soil group over the study domain from

3 May to 26 September 2016. Figure 3 shows the cor-

rection curves of each soil group. This figure illustrates

that most of the correction curves are similar except for

sandy soils. This is mostly due to the physical constraint

in the soil parameters, which in the used WRF version

have a field capacity (below this number soil water

moves under tension) of 0.192 (m3m23) and a water

content at saturation of 0.339 (m3m23) for sandy soils

while these two parameters for other soil types are at

least 0.283 and 0.404 (m3m23) for the field capacity and

saturated water content, respectively. The curves are

mostly smooth due to a large sample size except that

SMAP retrieval has many small and constant values

of 0.02m3m23, which are the minimum retrieved soil

moisture values (Entekhabi et al. 2014). For those

SMAP samples with a value of 0.02, we assign a me-

dian model soil moisture value of the corresponding

range for each soil type group. For example, 8.6% of

SMAP data in the group of soil sand have a soil

moisture value of 0.02, and the rescaled SMAP data

are assigned a value of 0.076m3m23, the value of model

soil moisture at the percentile of 4.3%. Figure 4

shows the CDFs of the SMAP soil moisture with and

without bias correction as well as the WRF-Noah

data. As is obvious, the rescaled SMAP soil moisture

data become in a close agreement with the Noah soil

moisture estimates.

d. Experiment design

To explore the relative importance of assimilating

satellite soil moisture retrievals via the schemes of

weakly and strongly coupled data assimilation, three

numerical experiments are conducted:

d OPNL, which is the open-loop run without any data

assimilation.
d WCDA, which includes the assimilation of the

rescaled SMAP 9-km soil moisture data and up-

dates only the state of top 10-cm soil moisture every

12 h. This experiment is considered an experiment

of weakly coupled land–atmosphere data assimilation.
d SCDA, which is the same as WCDA but updates the

states of not only land surface soil moisture but also

atmospheric potential temperature and specific hu-

midity every 12 h. This experiment is considered

an experiment of strongly coupled land–atmosphere

data assimilation.

In the data assimilation experiments, we update only

top 10-cm soil moisture as 1) the focus of this study is to

explore the direct impact of assimilating satellite data

on the analyses/forecasts of air temperature and humidity

rather than root-zone soil moisture and 2) several pre-

vious studies show that assimilation of satellite soil

moisture results in a small effect on lower-layer soil

moisture (Reichle and Koster 2005; Yin et al. 2014;

Blankenship et al. 2016; Lin et al. 2017a,b). Further-

more, because the SMAP data are available every 12 h,

we compute the analysis every 12 h. SMAP soil mois-

ture data from the ascending overpasses are assimi-

lated at 0000 UTC, while those from the descending

overpasses are assimilated at 1200 UTC. We chose a

constant observation error [i.e.,R inEq. (1)] of 0.04m3m23,

which is the overall SMAPmission accuracy (Entekhabi

et al. 2010a).

This study performs cycling experiments from 1 to

27 July 2016. This summertime period is chosen as the

forecast error and the cross-variable error correlation

are relatively large in the summertime (LP18), indi-

cating that the model is more sensitive to soil moisture

data assimilation in the summer than the winter. We

use the 0.258NCEP Final Analysis (FNL) to obtain the

lateral boundary conditions for the OPNL, SCDA, and

WCDA experiments. The NCEP FNL is produced via

the Global Forecast System (GFS) with the Noah

land surface model. Thus, the used soil moisture in our

experiments is not only inherently consistent with

the WRF-Noah model but also spun up well as the

FNL dataset is produced via cycling GFS-Noah runs.

TABLE 1. The overall SMAP sample size percentages in each soil

group over the study domain from 3 May to 26 Sep 2016. The total

sample size is approximately 10 million. There is no sample in the

soil types of indexes 5, 14, and 15 for the collected samples. The

indexes are according to the State Soil Geographic Database

(Miller and White 1998).

Index Types

Overall

percentages

1 Sand 5.11%

2 Loamy sand 1.88%

3 Sandy loam 16.49%

4 Silt loam
16.19%

13 Organic material

5 Silt —

6 Loam 40.18%

7 Sandy clay loam
2.93%

10 Sandy clay

8 Silty clay loam 4.26%

9 Clay loam 6.42%

11 Silty clay 1.23%

12 Clay 4.21%

14 Water —

15 Bedrock —

16 Other (land–ice) 1.10%

Sum 100.00%
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We first prepared multiple spinup runs based on 6-h

WRF-Noah forecasts valid every 12 h at 0000 and

1200 UTC during the study period (see the black boxes

in Fig. 5). In each 12-h cycle, there are three procedure

steps: replacement, data assimilation, and model in-

tegration. In the replacement step (i.e., the red boxes

in Fig. 5), from the second cycle, we use the 6-h spinup

forecasts as the initial conditions for all variables ex-

cept the states of soil moisture, potential temperature,

and specific humidity. The initial conditions for soil

moisture, temperature, and humidity (i.e., first guess)

are obtained from the 12-h forecasts of the previous

cycle. In the data assimilation step (i.e., the cyan boxes

in Fig. 5), we update only the top 10-cm soil moisture

state in WCDA, while we update the top 10-cm soil

moisture and atmospheric temperature and specific

humidity states in SCDA. Last, based on the initial

conditions with/without data assimilation, we perform

1) 12-h model integration for the next analysis cycle

and 2) 72-h forecast runs for the evaluation of the

experiments (see the green boxes in Fig. 5).

e. Evaluation method and reference datasets

To evaluate the model skill of land surface soil mois-

ture and atmospheric temperature and humidity,

we consider the International Soil Moisture Network

(ISMN), the conventional sounding and surface mea-

surements, the NCEP 0.258 FNL analysis dataset, and

NCEP Stage IV precipitation dataset. The ISMN

consists of a collection of individually operated soil

moisture network and includes automated quality con-

trol (Dorigo et al. 2013). To evaluate the performance

of modeled top 10-cm soil moisture, from the ISMNwe

particularly choose data from the Soil Climate Anal-

ysis Network (SCAN) and the Climate Reference Net-

work (CRN) due to their high quality over the United

States (Schaefer et al. 2007; Diamond et al. 2013). The

sounding data aremeasured twice at 0000 and 1200UTC

every day at the contiguous United States and routinely

assimilated into the NCEP Global Data Assimilation

System. The surface weather observations often include

pressure, temperature, humidity, and winds and can be

reported in the METAR data format with thousands of

stations in the United States. Figure 6 shows the stations

of SCAN/CRN and sounding measurements within the

region of interest. The NCEP FNL dataset is used for

evaluating the forecasts of temperature and humidity

profiles at 0000, 0600, 1200, and 1800 UTC every day

during the study period. The NCEP FNL dataset,

available every 6 h at a nearly real time, is obtained from

FIG. 3. The correction curves generated by sorting model and satellite soil moisture estimates

over various soil types from 3 May to 26 Sep 2016. Note that the curves of sandy clay loam (index

7 in Table 1), sandy clay (index 10), silty clay (index 11), and other (index 16) are not included

because of their similarity to the clustering curves (e.g., those of soil loam, silty clay loam, and

clay loam).
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the NCEP Global Forecast System with the incorpora-

tion of many observations into the analyses. This dataset

is commonly used as an atmospheric verification refer-

ence (e.g., Rakesh and Goswami 2011; Singh et al. 2011,

2012; Hsiao et al. 2012; Kumar et al. 2014; Chen et al.

2015; Wang and Cui 2018). The NCEP Stage IV dataset

is a ground-based precipitation product with gauge

correction (Lin and Mitchell 2005).

We use the metrics of bias, root-mean-square error

(RMSE), unbiased RMSE (ubRMSE), and Pearson’s

correlation coefficient (r) to quantify the model per-

formance. The formulations of metrics bias, RMSE,

and ubRMSE are as follows:

Bias5
1

N
�
N

i51
(M

i
2O

i
) , (2)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51
(M

i
2O

i
)2

s
, (3)

ubRMSE5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef[(M2E[M])2(O2E[O])]2g

q
, (4)

where Mi and Oi are the model outputs and the ob-

servational references, respectively; and E[�] is the

expectation operator. Metric ubRMSE is commonly

used for evaluating soil moisture retrievals andmodeling,

due to the presence of biases (Entekhabi et al. 2010b).

We also use the following equations to quantify the

relative impact (RI) of data assimilation:

RI
Bias

5

�
12

����BiasDA

Bias
OL

����
�

3 100%, (5)

RI
RMSE

5
RMSE

OL
2RMSE

DA

RMSE
OL

3 100%, (6)

RI
ubRMSE

5
ubRMSE

OL
2ubRMSE

DA

ubRMSE
OL

3 100%, (7)

RI
r
5

r
DA

2 r
OL

12 r
OL

3 100%, (8)

where DA and OL denote the data assimilation and

open-loop experiments, respectively. In Eqs. (5)–(8), a

value of 0% indicates a neutral effect due to data as-

similation, while a value of 100% illustrates the best

possible scenario.

3. Results

a. Comparison of land surface soil moisture and heat
fluxes

This subsection evaluates the top 10-cm soil moisture

model output against the ISMN over the Great Plains.

FIG. 4. The cumulative distribution function (CDF) of modeled surface soil moisture and

SMAP soil moisture estimates with and without rescaling from 3 May to 26 Sep 2016. The

averaged values are also reported.
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The 6- and 12-h forecasts of surface soil moisture at a

spatial resolution of 9 km initialized every 0000 and

1200 UTC during 1–27 July 2016 that are collocated

with the ISMN stations are evaluated. Table 2 shows

the statistics averaged over the ISMN stations within

the region of interest. Both of the data assimilation

experiments show improvement in all the metrics.

Although there is a difference in the performance of

WCDA and SCDA, the difference is relatively mar-

ginal compared to the improvement relative to OPNL.

The statistics of metric bias is not shown, as the aver-

aged results are nearly unbiased (i.e., less than

0.01m3m23) for all the three experiments. The table

also summarizes the relative impact of data assimi-

lation according to Eqs. (6)–(8). Both theWCDA and

SCDA experiments show a reduction in RMSE and

ubRMSE by approximately 10% and an enhancement

of temporal variability from 24% to 26%. On the whole,

the results show that the implemented variational ap-

proach can effectively improve the forecasts of surface

soil moisture, consistent with the previous research in

Lin et al. (2017a,b).

The peak-time (i.e., 1800 UTC or around 1200 local

time) surface latent and sensible heat flux forecasts

during 1–27 July 2016 are compared. Due to limited

heat flux observations, we mainly analyze the variations

of the heat fluxes between the open-loop and data as-

similation experiments. On average over space and time,

the peak-time values of OPNL are 260Wm22 (latent

heat) and 273Wm22 (sensible heat). The absolute dif-

ferences in the latent heat fluxes between OPNL and

the data assimilation experiments are 21.9Wm22

(OPNL vs WCDA) and 23.7Wm22 (OPNL vs SCDA),

while these values for the sensible heat fluxes are

22.9Wm22 (OPNL vs WCDA) and 24.6Wm22 (OPNL

vs SCDA). The variations of approximately 10% be-

tween OPNL and WCDA is directly attributed to the

soil moisture data assimilation. In contrast, adding air

TABLE 2. The average statistics obtained by comparing the ref-

erence observed soil moisture data at a depth of 5 cm with

the model top 10-cm soil moisture forecasts of nearest grid cell

every 6 h from 1 to 27 Jul 2016. The relative improvement (RI) of

the RMSE, ubRMSE, and correlation coefficient in each data as-

similation experiment relative to those metrics in OPNL is also

computed according to Eqs. (6)–(8).

OPNL WCDA SCDA

RMSE (m3m23) 0.0816 0.0739 0.0750

RMSE RI (%) — 9 8

ubRMSE (m3m23) 0.0400 0.0358 0.0360

ubRMSE RI (%) — 10 10

Correlation coef. 0.455 0.597 0.583

Correlation RI (%) — 26 24

FIG. 6. The locations of the SCAN/CRN soil moisture gauges

(blue dots) and the sounding data (red crosses).
FIG. 5. The flowchart of the experiments. At the second and later

cycles, the states of land surface soil moisture (SM), atmospheric

temperature (T), and atmospheric humidity (Q) are cycled from

the 12-h forecasts of the previous cycle, while the other variables

are obtained from 6-hWRF spinup forecasts. Detailed processes of

each color box are described in section 2d.
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temperature and humidity into the control states does

not lead to a significant difference in the heat flux

forecasts between WCDA and SCDA, which makes

sense as the difference in the soil moisture model

skills between WCDA and SCDA is only marginal

(see Table 2).

b. Evaluation of air temperature and humidity against
sounding data

This subsection evaluates the atmospheric tem-

perature and specific humidity forecasts against the

conventional sounding data. The forecasts with vari-

ous lead times (i.e., 12, 24, 36, 48, 60, and 72 h) that are

initialized during 10–27 July 2016 are verified against

the NCEP sounding data at 925, 850, 700, 500, 400,

300, 200, and 100 mb. The forecasts for the first few days

are considered the spinup of the cycling experiments

and not evaluated. The sample size of the sounding data

is on average around 1700 at each pressure level except

925mb, which has a size of around 1000 because of three

stations on the western part of the study region having

a relatively high elevation. Figure 7 shows the forecast

skills in term of bias and RMSE. The results show that

the impact of soil moisture data assimilation is negligible

above 700 mb for both WCDA and SCDA, which is

consistent with LP18. LP18 suggests that the impact

of soil moisture data under a scheme of strongly coupled

data assimilation is negligible above an eta level of 0.8

(approximately 760hPa). At the pressure levels of 850

and 925 mb, WCDA always leads to a higher forecast

skill than OPNL. SCDA results in an even better fore-

cast skill than WCDA at 850 and 925 mb, except the

metric RMSE in humidity at 850 mb. In the next

subsections, we will further explore the forecast skills

of temperature and humidity below approximately

760 hPa or the bottom 10 model atmospheric layers,

including the degradation of humidity forecasts at 850hPa

in SCDA (Fig. 7d).

c. Evaluation of air temperature and humidity
analyses against NCEP FNL dataset

This subsection investigates the impact of soil mois-

ture data assimilation on atmospheric conditions by

comparing the analyses of temperature and specific

humidity against the reference NCEP final analy-

sis dataset. The analyses during 10–27 July 2018 are

evaluated. In addition, we emphasize that this sub-

section focuses on the evaluation of the analyses

over the bottom 10 layers, as the impact of data as-

similation is marginal at upper air (see section 3b).

The pressure levels of the bottom 10 layers are under

approximately 760hPa on average over the Great

Plains. Note that we do not compute metric correlation

coefficient here, as this metric reflects mainly the di-

urnal variation for temperature and humidity, and

Lin et al. (2017b) shows the computed correlation

coefficient for temperature and humidity is very sim-

ilar between the cases with and without land surface

data assimilation.

Figure 8 shows the domain-mean values of the dif-

ference in the absolute bias and RMSE between the

WCDA/SCDA analyses and OPNL initial conditions

every 12 h during 10–27 July 2016. For the tempera-

ture, the WRF initial conditions in OPNL have an

overall warm bias at the bottom 10 atmospheric layers

with an average absolute bias of 2.1 (K) and an average

RMSE of 3.1 (K), averaged over various analysis cy-

cles and vertical layers (not shown). When SMAP data

are assimilated, WCDA leads to an overall reduction

in the bias and RMSE. SCDA further improves the

atmospheric analyses, with an additional reduction in

the bias and RMSE, which are about 54% and 36%, re-

spectively, more than the reduction inWCDA (Figs. 8a–d).

In terms of humidity, the OPNL initial conditions have

a dry bias on average with an average absolute bias of

0.85 (g kg21) and an average RMSE of 2.33 (g kg21).

SCDA also show a reduction in the bias and RMSE that

are approximately 35% and 8%, respectively, more than

WCDA (Figs. 8e–h). As section 3a reports that WCDA

and SCDA have only marginal difference in the land

surface moisture and heat flux estimates, the results

further demonstrate that the additionally improved at-

mospheric analyses in SCDA, compared to WCDA, are

mainly attributed to the implemented land–atmosphere

model error covariance and its corresponding strongly

coupled data assimilation.

d. Evaluation of air temperature and humidity
forecasts against NCEP FNL dataset

We further explore the benefit of soil moisture data

assimilation on the forecasts of temperature and hu-

midity against the NCEP FNL analysis. Similar to

section 3c, the forecasts over the bottom 10 atmospheric

layers (below approximately 760hPa) initialized every

12 h during 10–27 July 2018 are evaluated. Figure 9

shows metrics bias and RMSE in OPNL forecasts

over the Great Plains and the performance in WCDA

and SCDA relative to OPNL. Table 3 summarizes the

average values of the relative improvement reported

in Figs. 9d, 9e, 9i, and 9j. Figure 9a shows that there

is a warm bias in OPNL, with a relatively large mag-

nitude at layers from 3 to 7. At the lower layer, the

bias is the smallest, which leads to the largest relative

improvement in terms of bias (Figs. 9a,d,e). However,

the small bias is mainly attributed to the average

values over times, while in fact, the bias has a strong
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FIG. 7. The verification of temperature (T) and specific humidity (Q) forecasts of a lead time

of 12, 24, 36, 48, 60, and 72 h that are initialized at 0000 and 1200 UTC during 10–27 Jul 2016

against the sounding data. The subplots on the right column show an enlarged part of the

statistics at 850 and 925 hPa.
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diurnal variability. We observed that the warm bias

at the lowest layer peaks at 2400 UTC and can be as

large as the upper air temperatures, while the tem-

perature bias at the lower layers is small and even

negative (cold bias) during the night (1200 UTC) (not

shown). RMSE in OPNL is also larger on average at

layers 3–7 than the bottom layer (Fig. 9f). After data

assimilation, the warm bias is reduced. It can be seen

that throughout various lead times and vertical levels,

both WCDA and SCDA lead to improved tempera-

ture forecasts in terms of the bias and RMSE. SCDA

provides additional benefits compared to WCDA.

Table 3 shows that WCDA reduces the temperature

bias by 7.3%, while SCDA further improves the

forecasts with an additional bias reduction of 2.2%.

Besides, WCDA results in an RMSE reduction by

4.1%, while SCDA further reduces the RMSE by an

addition 0.8%.

Figure 10 shows the statistics of specific humidity

forecasts over the Great Plains. OPNL forecasts show

an overall dry bias with an average over space and

time of 20.59 g kg21 (Fig. 10a and Table 3). After

data assimilation, the bias is reduced. On average,

WCDA results in a reduction of bias by 19.3%, and

SCDA contributes an additional 3.3% of bias reduction

(Table 3). In terms of RMSE, SCDA leads to a larger

RMSE reduction below 850 hPa (around layer 7)

within a forecast lead time of up to two days than

FIG. 8. The difference of the domain-mean absolute bias and RMSE in the analyses of temperature and humidity

between OPNL and WCDA/SCDA. The absolute bias and RMSE are computed by comparing the model tem-

perature and humidity at the analysis time against the reference NCEP FNL dataset over the Great Plains.

The space (bottom 10 layers) and time (36 analysis cycles) averages are computed in each subplot.
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WCDA, with an average reduction of 0.038 g kg21 in

WCDA versus 0.046 g kg21 in SCDA. However, after

48 h, both WCDA and SCDA show a slight degrada-

tion on the humidity forecast between layers 7 and 10

(i.e., approximately 850 and 760 hPa, respectively).

This phenomenon over different levels also provides a

further explanation of themodel performance in Fig. 7d.

Overall from Figs. 10i and 10j and Table 3, we can see

FIG. 9. The bias and RMSE computed by comparing the model temperature forecasts with respect to the reference NCEP FNL dataset.

(a),(f) The OPNL results. (b),(c),(g),(h) The difference between WCDA/SCDA and OPNL and (d),(e),(i),(j) the relative improvement

(RI) statistics. The samples were collected from the forecasts initialized during 10–27 Jul 2016 over the Great Plains.

TABLE 3. The statistics of temperature and humidity forecasts averaged over time (various forecast lead times from 6 to 72 h) and space

(bottom 10 atmospheric layers) based on the results in Figs. 9 and 10. The relative improvement (RI) is reported by comparing the data

assimilation and open-loop experiments, according to Eqs. (5) and (6).

Experiments Bias Bias RI RMSE RMSE RI

Temperature OPNL 1.74K — 2.56K —

WCDA 1.62K 7.3% 2.46K 4.1%

SCDA 1.58K 9.5% 2.44K 4.9%

Humidity OPNL 20.59 g kg21 — 2.47 g kg21 —

WCDA 20.49 g kg21 19.3% 2.44 g kg21 1.1%

SCDA 20.47 g kg21 22.6% 2.44 g kg21 1.1%
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that the average reduction in RMSE is marginal (e.g.,

around 1%).

To understand the spatial effect due to data as-

similation, we compute the bias and RMSE of each

pixel over the Great Plains (Fig. 11). At each pixel,

the samples are from the 24-h forecasts of tempera-

ture and humidity that are over the bottom 10

atmospheric layers and initialized every 12 h during

10–27 July 2016. The figure reaffirms that OPNL

forecasts have a warm temperature bias and a dry

humidity bias. The bias is particularly evident in the

eastern part of the region. Assimilation of SMAP

data leads to cooler and wetter conditions for most of

the areas than the control run (Figs. 11e,g,i,k). The

results also show that a positive impact of assimilating

bias-corrected SMAP data is seen for most of the

areas in terms of bias and RMSE reduction, except a

marginal difference in humidity in terms of RMSE.

The improvement of the forecasts in SCDA is even

more substantial over the upper part of the region

than that in WCDA. Overall, the results demonstrate

that there is an additional gain in terms of weather

forecasts with the implementation of strongly cou-

pled data assimilation.

We further considered the Mountain West that has

relatively complete coverage of the valid SMAP data

(see Figs. 1 and 2) to briefly understand the effect of

data assimilation over another region. Similar to the

above results, the forecasts of bottom-10-layer tem-

perature and humidity during 10–27 July 2016 over

the Mountain West are evaluated against the NCEP

FNL analysis. It is found that the average differ-

ence in statistics between OPNL, WCDA, and SCDA

is only marginal. In terms of the bias and RMSE,

FIG. 10. As in Fig. 9, but for the statistics of humidity forecasts.
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the differences over the Mountain West between the

experiments are less 0.01 (K) for temperature and less

than 0.02 (g kg21) for specific humidity, which are much

less than those over the Great Plains (Table 3). This

indicates that coupled data assimilation is less effec-

tive over the Mountain West. As the land–atmosphere

coupling strength and the modeling error of land–

atmosphere states vary significantly in time and space

(Koster et al. 2004, 2006; Dirmeyer et al. 2009; LP18),

the relative importance of coupled soil moisture and

atmosphere data assimilation certainly varies in dif-

ferent regions. Future research that compares the ef-

fect of coupled data assimilation over more areas and

seasons is recommended.

e. Evaluation of 2-m temperature and humidity
forecasts against the surface METAR observations

In the WRF-Noah model, 2-m temperature and

humidity are diagnostic variables and computed

mainly based on the temperature and humidity of

FIG. 11. The bias and RMSE computed by comparing the 1-day forecasts initialized every 12 h during 10–27 Jul 2016 over the lowest

10 model layers with respect to the reference NCEP FNL dataset at the Great Plains. (top row) The OPNL results by averag-

ing samples over the time and vertical layers. (bottom two rows) The difference of statistics between the data assimilation and the

open-loop experiments.
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the land surface and bottom atmospheric layer. To

further demonstrate the effect of data assimilation, we

evaluate 2-m temperature and humidity forecasts

against the surface METAR stations. Over the region

of interest, there are a total of around 240 surface

weather stations. The forecasts with lead times of ev-

ery 6 h from 6 to 72 initialized at 0000 and 1200 UTC

during 10–27 July 2016 are investigated. Figure 12

shows the bias and RMSE in 2-m temperature aver-

aged over all the cycles and stations as well as the

relative improvement according to Eqs. (5) and (6).

The results are consistent with Table 3 and Fig. 9, in-

dicating the constant benefit over various lead times

of SMAP data in 2-m temperature forecasts under a

strongly coupled data assimilation structure in addi-

tion to that under a weakly coupled structure. Simi-

larly, Fig. 13 shows the statistics for 2-m humidity

forecasts, and it further demonstrates that SCDA is

superior to WCDA. The figure also reveals a reduced

gap in the improvement of humidity forecasts between

SCDA and WCDA beyond a lead time of 48 h, as

observed in Fig. 10.

f. Comparison of precipitation and soil moisture
analysis increments

The 1- and 2-day precipitation forecasts of a 9-km

resolution initialized at 0000 and 1200 UTC during

10–27 July 2016 are verified against the NCEP Stage

IV data. Figure 14 shows the overall bias and RMSE

averaged over the Great Plains and the time. In

general, the assimilation of SMAP data slightly im-

proves the precipitation forecasts. The small effect is

likely attributed to the fact that WCDA/SCDA leads

to the improvement of temperature and humidity

forecasts over mainly the lower troposphere (e.g.,

below 760 hPa), while precipitation is a diagnostic

variable that accounts for the dynamics across all over

the troposphere. Nonetheless, SCDA is showed to

provide additional benefits in the forecasts compared

to WCDA.

FIG. 12. (a),(c) The bias and RMSE computed by comparing 2-m temperature forecasts initialized every 12 h

during 10–27 Jul 2016 against the METAR weather stations within the region of interest; and (b),(d) the corre-

sponding relative improvement computed according to Eqs. (5) and (6). The values averaged over various lead

times are also reported.
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To further explore the effect of the underestimation,

we compare the precipitation and soil moisture analysis

increments. During 10–27 July 2016, the soil moisture

analysis increments are on average 0.0032 (m3m23)

with a standard deviation of 0.0044 (m3m23), which

means that the majority of the surface soil moisture

analyses becomes wetter. The underestimation of

precipitation forecasts is likely the main cause of the

overall small but positive soil moisture analysis in-

crements. Here, we recall that we performed the CDF

technique to remove a large-scale bias between the

model and observation (see section 2c). In the CDF

matching, we used multiple short-term WRF-Noah

forecasts with a lead time of 24 h to avoid any forecast

degradation under long-term model integration (e.g.,

Zhang et al. 2018). For the same period, 1-day pre-

cipitation forecasts used in the CDF matching have an

average bias of20.78 (mmday21), while this number in

the OPNL cycling experiment is 20.96 (mmday21)

(see Fig. 14). With such a difference, soil moisture in

the three main cycling experiments (i.e., OPNL,WCDA,

and SCDA) is expected to be drier than that used in the

CDF matching.

We compare the 36-h precipitation accumulation

from the NCEP Stage IV dataset and WCDA experi-

ment as well as the surface soil moisture analysis in-

crement valid at three times (13, 16, and 18 July 2018) in

Fig. 15. These cases are selected as they have relatively

large analysis increments. As is obvious, wherever heavy

precipitation appears in the NCEP Stage IV data but

is missed or underestimated in WCDA, the analysis

increments of surface moisture reflect the precipita-

tion discrepancy (see the pink arrows in Fig. 15). The

issue of incorrect precipitation forcing is quite common

in land surface data assimilation (e.g., Blankenship et al.

2018) and is expected to be exaggerated in coupled

land–atmosphere modeling. This further explains on

average a small but positive soil moisture analysis in-

crements, which help in reducing the bias and RMSE in

temperature and humidity forecasts.

4. Conclusions and discussion

This study presented promising results for the rela-

tive impact of assimilating SMAP 9-km enhanced soil

moisture retrieval on the WRF-Noah forecasts in the

FIG. 13. As in Fig. 12, but for the humidity forecasts.
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summer under the frameworks of weakly and strongly

coupled data assimilation (WCDA and SCDA) over the

Great Plains. We have provided evidence that the as-

similation of SMAP soil moisture data improves the

forecasts of surface soil moisture. The implementation

of SCDA provides additional benefits of the assimila-

tion of SMAP soil moisture on the analyses of tem-

perature and humidity over the lower troposphere

(e.g., below 760 hPa) compared to the use of WCDA.

The temperature and humidity forecasts at various lead

times of up to 72 h were verified against the conven-

tional sounding data, surface weather stations, and

NCEP analysis. The verification showed that soil

moisture data assimilation reduces not only a warm

bias in the temperature forecasts and a dry bias in the

humidity forecasts but also RMSE in both tempera-

ture and humidity forecasts over the lower tropo-

sphere. The improvement in temperature and humidity

forecasts also leads to the improvement in precipitation

forecasts. SCDA is demonstrated to be superior to

WCDA.

Considering the results obtained from this study, fu-

ture research can be devoted to the implementation of

soil moisture assimilation into operational NWP sys-

tems. In this study, we deployed 1D-Var in the coupled

data assimilation experiments, meaning that the assim-

ilated data in our SCDA experiment have a confined

impact over an atmospheric column above the analysis

grid cell during the analysis procedure. It is possible

that the impact of soil moisture data under an SCDA

framework is broader and stronger when an approach

such as three-dimensional variational data assimilation

(3D-Var) or ensemble Kalman filter (3D EnKF) is used.

In addition, this study used a model grid resolution of

9 km to match the resolution of the SMAP enhanced

soil moisture retrieval and assimilated only land sur-

face observations. Future implementation of soil mois-

ture assimilation would allow not only the research of

FIG. 14. The verification of precipitation forecasts initialized at 0000 and 1200 UTC during 10–27 Jul 2016 against

the NCEP Stage IV dataset. The relative improvement (RI) is reported according to Eqs. (5) and (6).
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FIG. 15. (a)–(c) The 36-h precipitation accumulation from the NCEP Stage IV data; (d)–(f) the 36-h precipitation forecasts from the

WCDA experiment; and (g)–(i) the analysis increments of top 10-cm soil moisture (AnaInc) valid at three selected times. Small and

irregular white shapes in (g)–(i) in the middle of large analysis increments are due to the quality control of SMAP data. The illustration of

the pink arrows is explained in section 3f.
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coupled data assimilation over various time and space

scales but also the simultaneous assimilation of land and

atmospheric observations.

Future work may also be further enhanced via the

analyses of deeper soil, the broader understanding of

local land–atmosphere coupling (LoCo) perspectives

(e.g., Santanello et al. 2018), and the incorporation of

error statistics based on observations. First, in this study,

the moisture of deeper soil layers is affected by coupled

data assimilation only via model integration; and it can

be included in the control analysis states in the future.

Second, future research can study coupled data assimi-

lation on a finer time scale and explore the detailed

connection between the land surface and atmosphere

via heat fluxes and planetary boundary layer diurnally.

Third, this study uses mainly the model-based error

statistics to represent the B-matrix. It would be inter-

esting if the B-matrix can be verified by or even incor-

porated with observation-based error statistics between

land–atmosphere variables (e.g., Liu and Pu 2019). We

also note that this study used an analysis cycle of 12 h

due to the availability of SMAP observations. Once at-

mospheric observations are incorporated, one should

conduct analysis more frequently such as every 6 h or

even shorter.
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